Claude : SPARQL Query Management System Implementation
Project Overview
Successfully implemented a comprehensive SPARQL query management system for the Semem library to centralize, organize, and optimize SPARQL query handling across all example workflows.
Implemented Components
1. Directory Structure
Created organized structure under /sparql/
:
sparql/
├── queries/
│ ├── retrieval/ # Data retrieval queries
│ ├── management/ # Graph management operations
│ ├── search/ # Semantic search queries
│ └── visualization/ # Knowledge graph visualization
├── templates/
│ ├── prefixes.sparql # Common namespace prefixes
│ └── fragments/ # Reusable query fragments
└── config/
└── query-mappings.json # Query name to file mappings
2. Core Service Classes
SPARQLQueryService (src/services/sparql/SPARQLQueryService.js
)
- Query loading with template parameter substitution
- Automatic prefix management
- Helper methods for common formatting tasks
- Integration with caching layer
QueryCache (src/services/sparql/QueryCache.js
)
- File modification detection and cache invalidation
- LRU eviction policy with configurable size limits
- TTL-based expiration
- Performance monitoring and statistics
3. Query Extraction and Organization
Extracted 16+ hardcoded queries from examples and organized them:
Retrieval Queries:
questions-with-relationships.sparql
- Question navigation relationshipsentity-content-retrieval.sparql
- Entity content fetchingnavigation-questions.sparql
- ZPT navigation with embeddingscorpus-loading.sparql
- Corpus data with embeddings and conceptsprocessed-questions.sparql
- Document QA question processingdocument-chunks.sparql
- Document chunk retrieval with metadataenhanced-questions-wikidata.sparql
- Multi-source question enhancement
Management Queries:
insert-data.sparql
- Basic INSERT DATA operationsclear-graph.sparql
- Graph clearing operationsrelationship-creation.sparql
- Relationship entity creationcontext-results-storage.sparql
- Context retrieval result storage
Search Queries:
ppr-concepts.sparql
- PPR seed concept extractionimportance-rankings.sparql
- Corpuscle importance scoringppr-results-export.sparql
- PPR search result storagedocument-chunks-count.sparql
- Document chunk counting
Visualization Queries:
knowledge-graph-construct.sparql
- Multi-domain knowledge graph visualization
4. Template System
Common Prefixes: Standardized namespace declarations across all queries
PREFIX ragno: <http://purl.org/stuff/ragno/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX semem: <http://semem.hyperdata.it/>
Query Fragments: Reusable patterns for common operations
embedding-attributes.sparql
- Backward-compatible embedding patternsconcept-attributes.sparql
- Concept attribute extractionflow-stage-filter.sparql
- Processing stage filtering
5. Example Workflow Updates
Created updated versions demonstrating integration:
GetResult-updated.js
- BeerQA result generation with query service03-retrieve-context-updated.js
- Document QA context retrieval
Key Features
Performance Optimizations
- Caching Layer: File-based invalidation with LRU eviction
- Parallel Loading: Async query and prefix loading
- Template Reuse: Minimize parsing overhead through caching
Developer Experience
- Centralized Management: All queries in organized file structure
- Parameter Substitution: Clean template system with
${parameter}
syntax - Helper Methods: Common formatting operations (entity lists, timestamps, etc.)
- Error Handling: Informative error messages with file paths
Maintainability
- Separation of Concerns: Queries separated from application logic
- Consistent Patterns: Standardized prefixes and query structure
- Version Control Friendly: Individual files for easy diff tracking
Testing Results
Comprehensive test suite validates:
- ✅ Service initialization and configuration
- ✅ Query loading and caching (16 available queries)
- ✅ Template parameter substitution
- ✅ Cache performance (1ms cached retrieval)
- ✅ Helper method functionality
- ✅ File modification detection
- ⚠ SPARQL endpoint integration (config-dependent)
Integration Benefits
Before
- Hardcoded queries scattered across 15+ files
- Duplicated prefix declarations
- No caching or optimization
- Difficult maintenance and debugging
After
- Centralized query repository with organized categories
- Automatic caching with file-based invalidation
- Consistent template system with parameter substitution
- Easy integration:
queryService.getQuery('query-name', params)
Usage Pattern
import { getDefaultQueryService } from '../../src/services/sparql/index.js';
const queryService = getDefaultQueryService();
const query = await queryService.getQuery('questions-with-relationships', {
graphURI: 'http://example.org/graph'
});
const result = await sparqlHelper.executeSelect(query);
Next Steps
- Migration: Update remaining example workflows to use query service
- Extension: Add query validation and SPARQL syntax checking
- Monitoring: Query performance metrics and usage analytics
- Documentation: API documentation and usage examples
The implemented system provides a solid foundation for scalable SPARQL query management while maintaining backward compatibility with existing SPARQLHelper infrastructure.